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Abstract
The Zr0.5−0.5xY0.5+0.25xNb0.25xO1.75 solid solution possesses an anion-deficient fluorite structure
across the entire 0 � x � 1 range. The relationship between the disorder within the crystalline
lattice and the preferred anion diffusion mechanism has been studied as a function of x , using
impedance spectroscopy measurements of the ionic conductivity (σ ), powder neutron
diffraction studies, including analysis of the ‘total’ scattering to probe the nature of the
short-range correlations between ions using reverse Monte Carlo (RMC) modelling, and
molecular dynamics (MD) simulations using potentials derived with a strong ab initio basis.
The highest total ionic conductivity (σ = 2.66 × 10−2 �−1 cm−1 at 1473 K) is measured for
the Zr2Y2O7 (x = 0) end member, with a decrease in σ with increasing x , whilst the neutron
diffraction studies show an increase in lattice disorder with x . This apparent contradiction can
be understood by considering the local structural distortions around the various cation species,
as determined from the RMC modelling and MD simulations. The addition of Nb5+ and its
stronger Coulomb interaction generates a more disordered local structure and enhances the
mobility of some anions. However, the influence of these pentavalent cations is outweighed by
the effect of the additional Y3+ cations introduced as x increases, which effectively trap many
anions and reduce the overall concentration of the mobile O2− species.

1. Introduction

Materials with high values of oxide-ion conductivity are
currently the subject of extensive research activity, motivated
by their technological applications within solid oxide fuel
cells (SOFCs), oxygen separation membranes and gas sensors.
Binary compounds of stoichiometry AO2 possessing the
cubic fluorite structure (figure 1) are of particular interest,
especially when some of the host cations are replaced
by species of a lower valence to produce anion-deficient
phases (e.g. A4+

1−x B3+
x O2−x/2 or A4+

1−x B2+
x O2−x ). The charge

compensating vacancies formed on the anion sublattice
become mobile at elevated temperatures, leading to the

5 Author to whom any correspondence should be addressed.

impressive ionic conductivities shown by, for example,
zirconia (ZrO2) ceramics doped with trivalent cations such as
Y3+, Sc3+ and the rare earths [1].

The highest ionic conductivities for zirconias are found in
those doped with Sc3+, though such samples have a number
of drawbacks in terms of cost and long-term stability [2].
As a consequence, the most widely used compounds are
formed by doping with Y3+. In the Zr1−x YxO2−x/2 system,
the monoclinic baddelyite structure adopted by pure ZrO2

transforms to a tetragonally distorted fluorite phase (t∗) at
x ≈ 0.05 and to the cubic fluorite phase (c∗) at x ≈
0.16 [3]. The ionic conductivity increases initially with x
due to the increasing concentration of O2− vacancies, but
reaches a maximum (σ ∼ 10−2 �−1 cm−1 at 1000 K [4])
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Figure 1. The cubic fluorite structure of a compound of
stoichiometry AO2 in space group Fm3̄m, with cations at the 4(a)
sites at 0, 0, 0, etc and the oxygen atoms at the 8(c) sites at
1/4, 1/4, 1/4 etc.

at close to the lower stability limit of the c∗ phase and then
falls rapidly. The latter behaviour has been attributed to the
increased lattice strain induced by the size mismatch between
host and dopant cations and to the formation of defect clusters
which effectively trap the mobile vacancies [5–9]. The nature
of the structural defects within Zr1−xYx O2−x/2 at relatively
high values of x has been the subject of considerable debate
within the literature (for references, see [10]), with evidence
favouring the formation of clusters which resemble the (long-
range ordered) structure of the phase Zr3Y4O12 [11, 12].

Compounds of stoichiometry M3NbO7 and M3TaO7

are also known to adopt anion-deficient fluorite structures,
provided the trivalent M cations are relatively small [13–16].
In the case of Y3NbO7, the diffuse scattering observed within
x-ray diffraction patterns has been interpreted in terms of small
domains possessing a pyrochlore-type structure [17], though
diffuse spots seen in electron diffraction images favoured
a more complex two-dimensional anti-phase structure [18].
However, the ionic conductivity of Y3NbO7 (σ ∼ 2 ×
10−5 �−1 cm−1 at 1000 K [17]) is significantly lower than
that of Zr1−x Yx O2−x/2. Whilst this precludes any applications
of Y3NbO7 as an oxide-ion conducting electrolyte within
SOFCs, the onset of significant electronic conduction at
low oxygen partial pressures makes solid solutions within
the Zr1−yYyO2−y/2–Y3NbO7 series of some interest for the
role of anode electrode material [19, 20]. The addition
of Y3NbO7 to pure ZrO2 (corresponding to the y = 0
system, i.e. Zr1−x Y0.75xNb0.25xO2−x ), stabilizes the c∗ phase
for x � 0.25, with the highest ionic conductivity observed
close to this composition as in the binary doped zirconias [21].
Two further systems which have been investigated are
Zr0.85−0.85xY0.15+0.6xNb0.25xO1.93−0.18x , which joins Y3NbO7

with the Zr1−yYyO2−y/2 compound whose yttrium content
(y = 0.15) has the highest conductivity [22, 23] and
Zr0.5−0.5xY0.5+0.25xNb0.25xO1.75, in which the zirconia-rich end
member has composition Zr2Y2O7 (i.e. y = 0.5) [22, 24, 25].

The Zr0.5−0.5xY0.5+0.25xNb0.25xO1.75 solid solution is of
particular interest because the oxygen (and, hence, vacancy)
concentration is constant across the series, allowing the role

of the cation sublattice on the conducting and structural
properties to be probed. As discussed by Irvine et al [26],
Nb5+ dopant ions are (effectively) oppositely charged with
respect to Y3+ and have a smaller ionic radius. Thus,
the addition of Nb5+ might be expected to reduce both
the vacancy association effects and strain within the lattice
and, as a consequence, increase the ionic conductivity.
However, impedance spectroscopy measurements indicate that
the conductivity decreases as x increases [20, 25]. Conversely,
from the structural viewpoint, neutron diffraction studies show
that the isotropic thermal vibration parameter of the anions
(which essentially models the level of static disorder within
the O2− sublattice) increases with x [20]. Electron diffraction
and transmission electron microscopy (TEM) studies have
suggested that the anion vacancies are aligned in pairs along
the 〈111〉 directions within the x = 1 (Y3NbO7) composition,
in manner related to the pyrochlore structure, but in 〈110〉
directions at the x = 0 (Zr2Y2O7) end, which resembles
the situation within the C-type structure of Y2O3 [24]. This
implies that short-range vacancy ordering of the type observed
in the pyrochlore structure is more favourable to anion mobility
than the C-type arrangement [23], though no clear explanation
of this structure–property relationship has been provided to
date.

In this paper we report the results of a combined
impedance spectroscopy, neutron diffraction and computer
simulation study of the system Zr0.5−0.5xY0.5+0.25xNb0.25xO1.75

with 0 � x � 1. The former technique confirms earlier
reports that the ionic conductivity decreases significantly
with x [20, 25], whilst the diffraction studies include
analysis of the ‘total’ (i.e. Bragg and diffuse) scattering to
investigate changes in the short-range correlations between
ions as a function of x and how these relate to the
anion conductivity. The computer simulations successfully
reproduce the experimentally determined short-range ionic
correlations and the composition dependence of the ionic
conductivity. This provides an explanation for the
apparently conflicting evidence for increased lattice disorder
and decreased ionic conductivity with increasing x in the
Zr0.5−0.5xY0.5+0.25xNb0.25xO1.75 system.

2. Experimental methods

2.1. Sample preparation

Powder samples of Zr0.5−0.5xY0.5+0.25xNb0.25xO1.75 with x =
0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 of typical volumes of
2.5 cm3 were prepared by mixing stoichiometric amounts of
the previously dried binary oxides Y2O3, Nb2O5 and ZrO2

supplied by the Aldrich Chemical Company and of stated
purities 99.999%, 99.99% and 99.99%, respectively. Each
sample mixture was thoroughly ground for about 1 h and
thereafter heated to 1823 K for 24 h before being pressed to
pellets that were heated for another 48 h at 1823 K. Samples
used for neutron diffraction were subsequently crushed and
ground into a fine powder. After the neutron diffraction
experiment the samples were re-sintered to pellets at 1773 K
and used for the impedance spectroscopy studies.
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2.2. Impedance spectroscopy

Two point AC conductivity measurements of the ionic
conductivity were performed using pelleted samples of
approximate dimensions 10 mm diameter and 1.5 mm height.
These were held between spring-loaded platinum disks inside
a ProboStat cell supplied by NorECs and heated from 773
to 1473 K in steps of 10 K under an atmosphere of air.
Complex impedance measurements were performed using a
Solartron SI 1260 Frequency Response Analyser over the
frequency range from 1 Hz to 1 MHz, with the real component
of the sample impedance and, hence, the total conductivity,
determined by least-squares equivalent circuit fitting to the
frequency dependent data using the program ZVIEW.

2.3. Neutron powder diffraction and total scattering

The neutron powder diffraction experiments were performed
on the Polaris powder diffractometer at the ISIS facility,
Rutherford Appleton Laboratory, UK [27] with the sample
encapsulated inside a thin-walled vanadium can of ∼6 mm
diameter and ∼60 mm height. The diffraction data were
collected for approximately 12 h and the models of the
averaged structure determined using the GSAS software [28].
For the total scattering study, the measured neutron diffraction
data was corrected for the effects of background scattering
from the sample environment and beam attenuation using
the program Gudrun [29], which also puts the scattered
intensity onto the absolute scattering cross-section scale
required for subsequent modelling. The normalized total
scattering structure factors, S(Q), were then used to obtain the
corresponding total radial distribution functions, G(r), via a
Fourier transform

G(r) = 1

(2π)3ρ0

∫ ∞

0
4π Q2S(Q)

sin Qr

Qr
dQ, (1)

where ρ0 is the average atom number density (in atoms Å
−3

).
G(r) can also be written as a sum of the individual partial radial
distribution functions, gi j(r), weighted by the concentrations
of the two species, ci and c j and their neutron scattering
lengths, bi and b j , so that

G(r) =
n∑

i, j=1

ci c j b̄i b̄ j gi j(r)

/( n∑
i=1

ci b̄i

)2

. (2)

The partial radial distribution functions are given by

gi j(r) = 1

4πr 2 dr

ni j(r)

ρ j
, (3)

where ni j (r) is the number of particles of type j located at a
distance between r and r +dr from a particle of type i and ρ j is
the number density of particles of type j , given by ρ j = c jρ0.

2.4. Reverse Monte Carlo modelling

Analysis of the total neutron scattering data (Bragg peaks
plus diffuse scattering components) was performed using the
RMCProfile software [30] which uses the reverse Monte Carlo

(RMC) method [31, 32]. Each RMC simulation used a
configuration box of 10 × 10 × 10 unit cells, i.e. containing a
total of 4000 cations (Y, Nb and Zr atoms according to sample
stoichiometry) and 7000 oxygen atoms. All atoms in each
RMC configuration box were initially randomly distributed
over their regular cation and anion crystallographic positions
in the fluorite structure, i.e. space group Fm3̄m with the
cations at the 4(a) 0, 0, 0 site and the oxygen atoms distributed
over the 8(c) 1/4, 1/4, 1/4 site. These initial configurations
were subsequently improved using the soft bond valence sum
(BVS) constraint within the RMCProfile code [33] (without
any experimental data) until approximately 30 000 accepted
moves were generated. The ensuing RMC simulations were
fitted using the reciprocal space data, S(Q) and the real space
data, G(r), plus the Bragg profile data which provides the
constraint of long-range crystallinity. The former is broadened
by convolution with a box function to reflect the finite size of
the simulation box, where

Sbox(Q) = 1

π

∫ ∞

−∞
Sexpt(Q′)

sin L(Q − Q′)/2

Q − Q′ dQ. (4)

L is the smallest dimension of the RMC configuration and, as
such, defines the upper limit of G(r).

The RMC simulations also made use of the BVS
constraint [33] and a closest approach constraint that proved
important to avoid short O–O contacts. The former helps
to differentiate between the cation species within the fitting
procedure, since all have rather similar neutron scattering
lengths (bY = 7.750 × 10−15 m, bNb = 7.054 × 10−15 m
and bZr = 7.160 × 10−15 m). The quality of the final fit to
both the Sbox(Q) and the G(r) for the Y3NbO7 and Zr2Y2O7

end members is shown in figures 2 and 3, respectively. None
of the RMC simulations of the Zr0.5−0.5xY0.5+0.25xNb0.25xO1.75

samples provides any evidence for short-range or long-range
cation ordering, i.e. the use of cation swapping neither
improved the agreement with experimental data or indicated
any tendency for a particular cation species to be surrounded
preferentially by cations of the same or a different kind.
This was additionally confirmed with total scattering data
collected for the isostructural compound Yb3NbO7, using the
same experimental conditions described above. The greater
difference in neutron scattering length between Yb and Nb
(bYb = 12.430×10−15 m) significantly increases the sensitivity
to cation ordering effects, but none were observed.

3. Molecular dynamic simulations

Two different models have been optimized for the molecular
dynamics (MD) simulations of the Zr0.5−0.5xY0.5+0.25xNb0.25x

O1.75 system. The first is an aspherical ion model that
includes quadrupole polarization (QUAIM) and the second
is a simpler dipole polarizable ion model (DIPPIM). In both
cases, all ions carry their formal (valence) charges. The other
parameters in these models are obtained by a generalized
‘force-matching’ procedure to the results of condensed-phase
ab initio DFT calculations as described in the appendix. The
models themselves are briefly described below.

3



J. Phys.: Condens. Matter 21 (2009) 215401 S T Norberg et al

Figure 2. The (a) G(r) and (b) Sbox(Q) fits obtained by the RMC
simulation of the neutron diffraction data from Y3NbO7, with dots
showing the experimental data and the solid line showing the
calculated profile.

3.1. Quadrupolar aspherical ion model (QUAIM)

The parameterization of the polarizable ion model for the
Zr0.5−0.5xY0.5+0.25xNb0.25xO1.75 system is very similar to that
used previously by Jahn et al [34, 35]. As a result, only a
brief summary will be given here. The interionic potential is
constructed from four components, describing charge–charge,
dispersion, overlap repulsion and polarization effects. The first
two components are purely pairwise additive, so that

V qq =
∑
i� j

qi q j

ri j
, (5)

where qi is the formal charge for ion i . The dispersion
interactions include dipole–dipole and dipole–quadrupole
terms

V disp =
∑
i� j

[
f i j
6 (r i j)ci j

6

r 6
i j

+ f i j
8 (r i j )ci j

8

r 8
i j

]
, (6)

with ci j
6 and ci j

8 as the dipole–dipole and dipole–quadrupole
dispersion coefficients, respectively and f i j

n as the Tang–
Tonnies dispersion damping function, describing short-range
corrections to the asymptotic dispersion term.

For the short-range repulsive terms of the potential,
deformable oxygen ions and rigid cations are considered.
The repulsion between the small cations is neglected, as
previously [35, 36]. The shape deformations are taken as
relatively insignificant for the anion–anion repulsions, which
are therefore represented by simple Born–Mayer exponentials,
but they are substantial in the shell of nearest neighbours,

Figure 3. The (a) G(r) and (b) Sbox(Q) fits obtained by the RMC
simulation of the neutron diffraction data from Zr2Y2O7, with dots
showing the experimental data and the solid line showing the
calculated profile.

i.e. for the anion–cation repulsion. The expression used here
for the short-range repulsion is thus given by

V rep =
∑

[A+−e−a+−�i j ] +
∑

[A−−e−a−−r i j ]
+

∑
[B+−e−b+−r2

i j ] +
∑

[B−−e−b−−r2
i j ]

+
∑

D(eβδσ i + e−βδσ i
) + (eζ 2|νi |2 − 1)

+ (eη2 |κ i |2 − 1), (7)

where �i j = r i j − δσ i − S(1)
α νi

α − S(2)
αβ κ i

αβ and a summation
of repeated indices is implied. The variable δσ i characterizes
the deviation of the radius of oxide ion i from its default value,
while νi

α is a set of three variables describing the Cartesian
components of a dipolar distortion of the ion and κ i

αβ is a
set of five independent variables describing the corresponding
quadrupolar shape distortions. In the expression for the short-
range repulsion, |κ |2 = κ2

xx + κ2
yy + κ2

zz + 2(κ2
xy + κ2

xz + κ2
yz),

and S(1)
α = (r i j

α )/r i j plus S(2)
αβ = 3(r i j

α r i j
β )/(r i j)2 − δαβ

are the interaction tensors. The last summation includes the
self-energy terms, representing the energy required to deform
the anion charge density, with β , ζ and κ as effective force
constants. The extent of each ion’s distortion is determined
at each MD time step by energy minimizations. The terms∑[B+−e−b+−r2

i j ] and
∑[B−−e−b−−r2

i j ] are Gaussians which act
as a steep repulsion wall and account for the anion hard core.
These extra terms are used in cases where the ions are strongly
polarized to avoid instability problems at very small anion–
cation separations [37].

The polarization part of the potential incorporates dipolar
and quadrupolar contributions as described by equation (2.5)
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in [38]. The instantaneous values of these moments
are obtained by minimization of this expression. The
charge-dipole and charge-quadrupole cation–anion and anion–
anion asymptotic functions include terms which account for
penetration effects at short-range by using Tang–Tonnies
damping functions of the form

gD(r i j) = cDe−bDr i j
4∑

k=0

(bDr i j)k

k! (8)

and

gQ(r i j) = cQe−bQr i j
6∑

k=0

(bQr i j )k

k! . (9)

D and Q represent the dipolar and quadrupolar parts,
respectively. The parameters bD and bQ determine the range at
which the overlap of the charge densities affects the induced
multipoles, whilst the parameters cD and cQ determine the
strength of the ion response to this effect.

3.2. Dipole-polarizable ion model (DIPPIM)

The model described above has the drawback of being
computationally very demanding. The studies presented in
this paper require long simulations, with many hundreds of
ions. For this reason, alternative (faster) potentials have
also been developed where the ion-shape deformation effects
and quadrupolar contributions to the polarization part of the
potential are neglected. As shown in section 4.3, omitting
the short-range deformation and quadrupole polarization terms
leads to a slightly poorer agreement between simulated and
experimental structures but allows much longer simulations to
obtain good statistics for the conduction properties. In this
case, the short-range repulsion term is given by [37, 39],

V rep =
∑[

A+−e−a+−r i j

ri j

]
+

∑[
A−−e−a−−r i j

ri j

]

+
∑

[B+−e−b+−r2
i j ] +

∑
[B−−e−b−−r2

i j ], (10)

where the 1/r form was selected as this is known to give a
better fit of the short-range interaction [37]. The polarization
part of the potential is equal to equation (2.5) in [38] with
Ci and Bi set equal to zero. See the appendix for further
details regarding the parameters used for both the QUAIM and
DIPPIM models.

3.3. MD simulation details

All the simulations on the Zr0.5−0.5xY0.5+0.25xNb0.25xO1.75

system were performed using a cubic simulation box with
4 × 4 × 4 unit cells, i.e. 256 cations and 448 oxygen ions.
The cation species were randomly distributed over the cation
sublattice, since there is no experimental evidence of any
ordering (see section 2.4 and [20, 21, 25]). The time step used
was 20 au = 4.84 × 10−4 ps and all the runs were performed
at constant pressure and temperature (N PT ensemble), with
thermostats and barostats as described elsewhere [40, 41] and
the external pressure set to zero. Only the high temperature
runs were performed at constant volume and temperature
(NV T ensemble), in which the cell volume was obtained from

a previous run in a N PT ensemble. Coulombic and dispersion
interactions were summed using Ewald summations while the
short-range part of the potential was truncated to half the length
of the simulation box, i.e., about 19 au. The potential used
was the full QUAIM model for the calculation of the G(r)s,
whilst the DIPPIM potential was used to calculate the diffusion
coefficients and ionic conductivities.

The simulations were started from a perfect fluorite
structure and the system was equilibrated at 2000 K for 50 000
steps, to allow both cations and anions to relax in the crystal.
The system was then cooled down, first to 1000 K for 10 000
steps and then to 300 K for another 10 000 steps, before a final
run of 10 000 steps was performed to accumulate sufficient
statistics for the calculation of the radial distribution functions.
Ionic conductivities were estimated from the simulations using
the formula

σ = c2ρD

kBT
, (11)

where c is the charge of the mobile species (in this case the
oxygen ions), ρ is the system density, D is the diffusion
coefficient, kB is the Boltzmann constant and T is the
temperature. The diffusion coefficient can be obtained from
the slope of the mean squared displacement at long times, i.e.

D = lim
t→∞

1

6NO2−

〈NO2−∑
j=1

[r j (t) − r j (0)]2

〉
, (12)

where NO2− is the number of oxygen ions and r j (t) is the
position of ion j at time t .

The calculations of the diffusion coefficient were
performed using the same configuration of ions as used in the
calculation of the G(r). This was then equilibrated for 100 000
steps at the required temperature in an N PT ensemble and
then in a longer simulation of up to 1000 000 steps, i.e. 484 ps,
using an NV T ensemble to accumulate sufficient statistics for
the calculation of the mean squared displacements.

4. Results

4.1. Ionic conductivity measurements

The ionic conductivity, σ , of the Zr0.5−0.5xY0.5+0.25xNb0.25x

O1.75 samples with x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0, measured
at T = 1473 K, are shown in figure 4(a). The overall decrease
in σ with increasing x is consistent with the trends observed
previously by Irvine et al [20] and by Lee et al [21, 25]. The
slightly lower ionic conductivities obtained in this work are
probably a consequence of sample pellets with a more porous
structure.

4.2. Rietveld refinement of the averaged structure

Rietveld refinement [42] of the neutron powder diffraction data
collected from the six samples of Zr0.5−0.5xY0.5+0.25xNb0.25x

O1.75 with x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 were performed
using the conventional model for an anion-deficient fluorite
structure, with the cations (Y, Nb and Zr) randomly distributed
over the 4(a) sites of space group Fm3̄m and the anions

5
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Figure 4. (a) Measured conductivity (at 1473 K), and (b) changes in
the unit cell parameters (solid line), cation thermal vibration (short
dashed line) and anion thermal vibration (long dashed line) for the
Zr0.5−0.5xY0.5+0.25xNb0.25xO1.75 samples. The standard uncertainties,
for all data points, are smaller than the size of the symbol.

distributed over the 8(c) sites at 1/4, 1/4, 1/4, etc, with an
average occupancy of 7/8, The refined parameters comprised
a scale factor, the cubic lattice parameter, a, isotropic thermal
vibration parameters for the cations and anions, uM and
uO, plus 20 coefficients of a shifted Chebyshev polynomial
describing the undulating background scattering and four
coefficients describing Gaussian and Lorentzian contributions
to the Bragg peak shapes. Excellent fits to the experimental
data were obtained in all cases using the adopted structural
model. Alternative models, allowing the cations or anions to
displace preferentially in the 〈100〉, 〈110〉 or 〈111〉 directions,
did not improve the quality of the fit. The variation of a,
uM and uO, with x is illustrated in figure 4(b), with the unit
cell constant for the Y3NbO7 and Zr2Y2O7 end members
being almost the same, 5.249 37(4) Å and 5.204 14(9) Å,
respectively. The changes in thermal vibration parameters are
also small for the cations, whilst the anion thermal vibration
parameter increases significantly with increasing x , as seen
previously [20].

4.3. G(r)s from RMC and MD simulations

The total radial distribution functions, G(r), for all the
Zr0.5−0.5xY0.5+0.5xNb0.25xO1.75 compositions obtained from
both the RMC and the MD simulations agree well with
each other and with the experimental G(r) obtained
by direct Fourier transformation of the total scattering
structure factor, S(Q) (see figure 5). Indeed, the almost
perfect agreement between the RMC simulation and the
experimental data makes them almost indistinguishable. It
should be emphasized that the good agreement between
the QUAIM model and the experimental data across the
entire Zr0.5−0.5xY0.5+0.25xNb0.25xO1.75 series indicates that the
potentials are highly transferable with excellent reproduction

Figure 5. Total radial distribution functions, G(r), from the QUAIM
(solid line) and the RMC (dashed line) simulations for the
Zr0.5−0.5xY0.5+0.25xNb0.25xO1.75 system. The black dots represent the
G(r) obtained directly by Fourier transform of the experimental total
scattering structure factor, S(Q).

Figure 6. The simulated total radial distribution functions, G(r),
obtained for Y3NbO7 using the QUAIM model (solid line) and the
DIPPIM model (dashed line). The black dots represent the G(r)
obtained directly by Fourier transform of the experimental total
scattering structure factor, S(Q).

of the cation–anion distances and predicted lattice parameters,
which agree with the experimental ones to within ±0.5%.

Nonetheless, the MD simulations make use of two
different models and the total G(r) obtained with both the
QUAIM and the DIPPIM potentials for Y3NbO7 are compared
with the experimental G(r) in figure 6. The DIPPIM model
gives a good fit, though slightly inferior to that given by the
QUAIM model, even though it neglects ion-shape deformation
effects and quadrupolar interactions. Because the DIPPIM is
simpler and faster than the QUAIM we will use it to study the
dynamical properties with the reassurance that the predicted
structure is not substantially poorer.

4.4. Ionic conductivities from MD simulations

Calculations of the mean square displacements of the ionic
species in Zr0.5−0.5xY0.5+0.25xNb0.25xO1.75, using the DIPPIM
model, clearly demonstrate that the oxygen ions are mobile,
whilst the cations show no diffusive behaviour. Figure 7 plots
log σ T as a function of reciprocal temperature for Zr2Y2O7, to

6
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Figure 7. Comparison between the measured conductivity data of
Lee et al [25] (short dashed line), our experimental data (long dashed
line) and the DIPPIM simulations (solid line) for Zr2Y2O7. The inset
shows changes in the MD simulated conductivity at 2000 K as a
function of x in Zr0.5−0.5xY0.5+0.25xNb0.25xO1.75.

compare the ionic conductivity from the DIPPIM simulations
with that published by Lee et al [25] and reported here for our
samples. The simulations were performed at 1500, 1700, 2000
and 2200 K, since the slow dynamics at lower temperatures
would require extremely long simulations in order to obtain
a meaningful mean square displacement curve from which
a diffusion coefficient can be extracted. The agreement
between the experimental and simulated ionic conductivities
is quite good, with the differences probably caused by the
density of the sample pellets being less than 100% and/or
the assumption of uncorrelated motion of the charge carriers
which is inherent in equation (11). Nevertheless, the Arrhenius
activation energy of 1.1 eV extracted from the simulations is
comparable with previous experimental data [25]. The inset
to figure 7 shows the calculated bulk ionic conductivity of
Zr0.5−0.5xY0.5+0.25xNb0.25xO1.75 for x = 0.0, 0.2, 0.4, 0.6, 0.8,
1.0 at T = 2000 K and clearly shows that the conductivity
increases with decreasing x , which is also consistent with both
our own impedance experiments and earlier work by Lee et al
[21, 25].

5. Discussion

5.1. Radial distribution functions

The partial radial distribution functions, g jk(r), are readily
extracted from the RMC and MD configurations and the
resulting partial radial distribution functions, gYO(r), gNbO(r)

and gZrO(r) are shown in figure 8 and compared with those
from the QUAIM simulations. The location of the first peak
is observed at around 2.28, 1.96 and 2.10 Å for Y–O, Nb–O
and Zr–O, respectively, and these differences in bond distances
are consistent with the ionic radii reported by Shannon [43].
Interestingly, the bond distances for Y–O and Zr–O given
by the simulations imply an oxygen coordination number of
between 6 and 7, whilst the Nb–O bond distance suggests
an oxygen coordination number slightly lower than 6. The
cation–O bond distances given by the Rietveld refinement
of the neutron diffraction data for Y3NbO7 and Zr2Y2O7

are 2.273 05(1) Å and 2.253 46(3) Å, respectively, which
are closest to the bond distance for Y–O. The difference

Figure 8. Partial radial distribution functions, g jk(r), as determined
from RMC (dashed lines) and QUAIM (solid lines) simulations.
(a) gYO(r) and (b) gNbO(r) are for Y3NbO7, whilst (c) gYO(r) and
(d) gZrO(r) are for Zr2Y2O7.

between the Nb–O bond distance on a local scale and that
expected for a long-range ordered (perfect) fluorite lattice
indicates that the addition of Nb5+ cations leads to an
increase in the degree of short-range disorder within the anion
sublattice.

A complete discussion of the local lattice disorder within
the Zr0.5−0.5xY0.5+0.25xNb0.25xO1.75 system must also consider
the anion–anion interactions. Figure 9 plots the gOO(r) for
all the Zr0.5−0.5xY0.5+0.25xNb0.25xO1.75 compositions obtained
using the RMC and QUAIM simulations. It is clear in
figure 9(a) that the position of the first O–O radial distribution
peak for the Zr0.5−0.5xY0.5+0.25xNb0.25xO1.75 samples is shifted
towards a shorter distance in comparison with Y3NbO7 (see
table 1). The first gOO(r) peak position for Zr2Y2O7 is closer
to the expected value for a fluorite structure of similar unit cell
size, as illustrated by the plot of the gOO(r) for a perfect fluorite
in figure 9(b). However, the shift from the expected distance
increases with increasing Nb content, which clearly indicates
that the extent of disorder within the oxygen sublattice is
highest in the Y3NbO7 end member, but decreases towards
the Zr2Y2O7 end member. Further evidence of the increased
disorder within the anion sublattice with x is the existence of a
more pronounced second peak at around 3.55 Å in the plotted
gOO(r)s for Zr2Y2O7, clearly indicating that Zr2Y2O7 retains
a more regular cubic arrangement of anions around its cations,
whilst the local anion arrangement within Y3NbO7 is rather
more distorted on a local scale. This explains the increase in
the oxygen thermal vibration parameter, uO, with x shown by
the refinements of the neutron diffraction data (figure 4(b)),
since uO effectively models the broader distribution of anions
around their ideal 8(c) sites.

7
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Figure 9. (a) The partial radial distribution functions, gOO(r) for the
Zr0.5−0.5xY0.5+0.25xNb0.25xO1.75 system, calculated from both the
RMC model (dashed line) and the QUAIM simulations (solid line).
(b) The corresponding gOO(r) expected for a perfect fluorite structure
scaled to the unit cell size of Y3NbO7.

Table 1. Comparison of the position of the first peak gOO(r) with
that expected from Rietveld refinement of the neutron diffraction
data.

Compound
Position of first
gOO(r) peak (Å)

Shift from
expecteda (Å)

Y3NbO7 2.76 0.13
Zr0.4Y2.8Nb0.8O7 2.78 0.15
Zr0.8Y2.6Nb0.6O7 2.74 0.12
Zr1.2Y2.4Nb0.4O7 2.70 0.09
Zr1.6Y2.2Nb0.2O7 2.68 0.07
Zr2Y2O7 2.66 0.06

a Based on Rietveld refinement.

5.2. Angular distribution functions

In the ideal cubic fluorite structure the cations are situated at
the centre of a cube of anions and the expected O–cation–
O bond angles are 70.5◦, 109.5◦ and 180◦, corresponding to
anion pairs that are nearest neighbours along the 〈100〉, 〈110〉
or 〈111〉 directions, respectively. Figure 10 plots the angular
distribution functions, AOcationO(θ), obtained from both the
RMC and the MD simulations. The cases of AOYO(θ) and
AOZrO(θ) show broad peaks centred at the expected angles,
whilst the AONbO(θ) angular distributions are shifted towards
bond angles distributed around 85◦–95◦ and 180◦. The Nb–
O pair distribution function described above indicates that the
Nb5+ is coordinated to around 6 surrounding oxygen atoms,
as opposed to 7 for Y and Zr. These observations suggest that
the Nb5+ cation is attempting to adopt a distorted octahedral
geometry of surrounding anions, of the type found in several
phases of Nb2O5 [44, 45].

The increasing short-range disorder in the
Zr0.5−0.5xY0.5+0.25xNb0.25xO1.75 system with increasing x is,
therefore, a consequence of the Nb5+ cation’s desire to adopt
its preferred octahedral coordination, with substantially shorter
bond distances than the average cation–O bond distance within

Figure 10. The calculated angular distribution functions, AOYO(θ)
(long dashed line), AOZrO(θ) (short dashed line) and AONbO(θ) (solid
line), from both (a) RMC and (b) QUAIM simulations.

the material (as given by the Rietveld refinement of the Bragg
scattering). The lower anion coordination number for Nb5+
and more distorted O–cation–O bond angles around the Nb5+
generate vacant anion sites that are randomly distributed within
the lattice (since there is no cation ordering) and might be ex-
pected to increase the ionic conductivity. However, this is not
the case and it is necessary to consider the mobility of individ-
ual anions.

5.3. Oxygen mobility

A detailed investigation of the mean squared displacements of
the individual anions within the MD simulations of Y3NbO7

indicated that a relatively small number of anions possess a
very high mobility, but also that a significant anion fraction do
not take part in the conducting process at all. To illustrate this
behaviour and allow a comparison with the case of Zr2Y2O7,
the DIPPIM simulations were divided into 10 steps of equal
time (∼48.4 ps) in order to compare the mobility of different
anions. Each anion moving a distance greater than λ (with
λ equal to 1.5 times the average mean square displacement
of an anion) is assigned to be ‘mobile’. In both Y3NbO7

and Zr2Y2O7, λ was comparable to the nearest neighbour O–
O separation. Thus, it is possible to obtain the distribution
of ‘mobility’ for the anions in Y3NbO7 and Y2Zr2O7, with
a maximum value of 10 and a minimum value of 0. As
illustrated in figure 11, the main difference in the anion
mobility behaviour between Y3NbO7 and Zr2Y2O7 is that
the former has a large fraction of ‘immobile’ anions that do
not contribute to the overall anion conductivity. Conversely,
Zr2Y2O7 has a broad peak with a maximum at around 2–3
in ‘mobility’. The latter suggest that almost all of the anions

8



J. Phys.: Condens. Matter 21 (2009) 215401 S T Norberg et al

Figure 11. Plot of the number of anions versus anion ‘mobility’ for
Y3NbO7 (dashed line) and Zr2Y2O7 (solid line), demonstrating the
greater mobility of the anions in Zr2Y2O7 and the significant fraction
of immobile anions in Y3NbO7.

contribute to the conductivity in Zr2Y2O7 and do not become
trapped in a particular anion site.

A detailed analysis of the trapped anions within Y3NbO7

reveals that they merely vibrate around their equilibrium
position and it is tempting to associate the trapping of O2−
anions with their strong Coulombic interaction with Nb5+
cations. However, closer inspection shows this assumption
to be incorrect, since the majority of trapped anions have
surrounding cation environments with a higher than average
number of Y3+. So, whilst Y3NbO7 has a small number of
anions that are very mobile (see figure 11), there are numerous
anions trapped at sites with many neighbouring Y3+ cations.
Thus, increasing x is detrimental to the conductivity process
because it increases the concentration of Y3+ cations. A
plausible explanation of this effect is that the increased ionic
size of Y3+ (compared to the Zr4+ it replaces) effectively traps
the O2− anions within their tetrahedral cavities.

6. Conclusions

As a general rule, crystalline ionic solids showing high values
of ionic conductivity are characterized by relatively high
levels of disorder within the crystal lattice. In this context,
the Zr0.5−0.5xY0.5+0.25xNb0.25xO1.75 system is rather unusual,
since the degree of disorder within the anion sublattice, as
indicated by the anion thermal vibration parameter determined
by neutron powder diffraction studies, increases with x whilst
the ionic conductivity decreases with x . The combination of
impedance spectroscopy studies, measurements of the total
(Bragg plus diffuse) neutron scattering and MD simulations
using potentials derived from ab initio calculations has
provided a plausible model to explain this behaviour. The
increased disorder within the anion sublattice as x increases
is principally caused by the increased concentration of the
smaller Nb5+ cations. These pentavalent cations might,
in themselves, even promote the anion conduction process,
despite their stronger Coulombic interactions. However, this
effect is outweighed by the simultaneous increase in the Y3+
content with x , since these larger cations act as effective
traps for the anions and, overall, the ionic conductivity
decreases. Whilst this explanation can successfully account for

the observed structural properties and ionic conductivity within
the Zr0.5−0.5xY0.5+0.25xNb0.25xO1.75 system, it does prompt a
number of questions. In particular, the role of the size and
charge of cations in promoting/hindering anion diffusion needs
to be understood, and this issue will be addressed in a future
publication. In a wider context, such information is needed
to inform attempts to synthesize new compounds possessing
high oxide-ion conductivities to meet the expanding demands
provided by fuel cell and gas sensor technologies.

Alongside these physical results, the paper has demon-
strated a remarkable capability of the RMC analysis of the to-
tal neutron scattering for this type of system. Figures 8 and 9
show excellent accord between the partial radial distribution
functions extracted from the RMC and the MD simulations,
despite the fact that 6 partials contribute to the scattering in the
Zr2Y2O7 and Y3NbO7 systems and that the gOO(r) is strongly
affected by disorder. The bond angle distribution functions
(figure 10) agree too, which is even more remarkable since the
total scattering depends on two-particle correlations, while the
bond angle involves the relative position of three particles. Al-
though one should be careful not to confuse the MD system
with the real material, the many-body correlations do follow
from a physical interaction potential (including many-body in-
teractions) which was parameterized in a non-empirical way
and the MD predicted properties agree well with experiment.
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Appendix

A.1. DFT reference calculations

Both the QUAIM and DIPPIM interaction models were
parameterized by force-matching to DFT calculations carried
out on condensed-phase configurations, as described by Jahn
et al in [34, 35]. Starting from a Born–Mayer potential
from the literature [46] for yttria-stabilized zirconia (with
the Nb–O interaction obtained by scaling the Zr–O one),
one atomic configuration for Y3NbO7 and one for ZrO2

were generated by running short MD simulations on small
cells (80–96 ions) at 1500 K. These two configurations were
used to run DFT reference calculations (see below) and an
initial QUAIM model was fitted to the forces, dipoles and
quadrupoles. These potentials were then used to generate more
reference MD configurations for Y3NbO7 and ZrO2 at 1500 K.
For each of these, the Hellman–Feynman forces acting on
individual ions of the simulation cell were calculated using the
planewave-DFT code CASTEP [47]. All the calculations used
norm-conserving pseudopotentials generated via the OPIUM
program and planewave energy cut-offs of 1000 eV and
were performed using the generalized gradient approximation
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Table A.1. Parameters for the QUAIM potentials with values in au,
and short-range parameters only reported for those with a b
parameter not equal to zero.

O–O Y–O Zr–O Nb–O

Aij 0.0 165.19 345.01 159.76
ai j 5.0 1.7586 1.9590 1.7038
Bij 50 000 50 000 50 000 50 000
bi j 0.85 1.2 1.2 1.3

Cij
6 44.0 10 10 5

Cij
8 853.0 200 200 100

bi j
disp 1.0 1.5 1.5 1.5

D 0.1616
ζ 1.168
α 14.49 4.86 2.67 2.53
β 3.154
η 14.842
C 1.5574

bO–O
D 2.097 bO–Zr

D 1.778

cO–O
D 1.058 cO–Zr

D 1.674

bO–O
Q 2.363 bO–Zr

Q 1.048

cO–O
Q 4.999 cO–Zr

Q 0.645

bO–Y
D 1.811 bY–O

D 1.810

cO–Y
D 2.285 cY–O

D −0.891

bO–Y
Q 1.837 bY–Nb

D 1.788

cO–Y
Q 1.442 cY–Nb

D 0.717

bO–Nb
D 1.845 bNb–O

D 1.845

cO–Nb
D 1.714 cNb–O

D −0.523

bO–Nb
Q 1.865 bNb–Y

D 1.788

cO–Nb
Q 1.203 cNb–Y

D 3.50

(GGA) according to the Perdew, Burke and Ernzerhof (PBE)
scheme. For the calculation of ab initio multipoles, the Kohn–
Sham orbitals are localized via a Wannier transformation to
construct maximally localized Wannier functions (MLWF).
From the localized orbitals, ionic dipoles and quadrupoles were
calculated [48].

A.2. Force-matching procedure

The potential parameters are optimized by fitting the forces,
dipoles and quadrupoles predicted by the QUAIM and DIPPIM
potentials for the reference configurations to the respective
results from the DFT calculations. The 6 configurations
provide a total of around 2500 data points, comprising
three Cartesian force components of each individual ion,
three components for the dipole and six components for the
quadrupole of each ion. While most of the potential parameters
are left as free parameters in the fits, there are some exceptions.
In the QUAIM fits, the parameter Bi (hyperpolarizability) was
set to zero, as this was not found to significantly affect the
quality of the fit. In addition, the Ci parameter (quadrupole
polarizability) was found to be very small for the cations and
therefore was set to zero. For this reason, the short-range
effects on the cation quadrupoles were also neglected.

One problem with DFT calculations is the uncontrolled
representation of the dispersion interaction. Although

Table A.2. Parameters for the DIPPIM potentials with values in au,
and short-range parameters only reported for those with a b
parameter not equal to zero.

O–O Y–O Zr–O Nb–O

Aij 4.97 104.53 55.05 59.108
ai j 22.99 1.389 1.144 1.137
Bij 50 000 50 000 50 000 50 000
bi j 0.85 1.35 1.43 1.53

Cij
6 44 10 10 5

Cij
8 853 200 200 100

bi j
disp 1.0 1.5 1.5 1.5

α 13.65 4.73 3.23 3.76

bO–O
D 1.99 bO–Zr

D 1.642

cO–O
D 0.689 cO–Zr

D 1.396

bO–Y
D 1.824 bY–O

D 1.806

cO–Y
D 2.215 cY–O

D −0.455

bO–Nb
D 1.844 bNb–Y

D 1.805

cO–Nb
D 1.700 cNb–Y

D 3.50

dispersion energies only contribute a tiny fraction to the
total energy, they have a considerable influence on transition
pressures and, in particular, on the material density and stress
tensor. For this reason, the dispersion parameters were not
included in the fits, as discussed by Madden et al [49], but
were added afterwards. The parameters in [34] were used
after rescaling with respect to the ionic radii. The Gaussian
parameters were also added after the fit, which was then rerun
to check that its quality was unchanged [37].

The parameters obtained for the QUAIM and DIPPIM
potentials are summarized in tables A.1 and A.2. After fitting
such a complicated model with tens of parameters it is useful
to check that the derived parameters retain their physical
meaning. The oxygen polarizability, for instance, is α ≈ 14 au
which is in good agreement with that used previously [36]
and that obtained by extrapolation of ab initio calculations on
other oxides [50]. In addition, the Y and Zr polarizabilities
are in good agreement with the value of 4.05 au in [50] (ab
initio calculations) and 2.76 au in [8] (experimental dielectric
properties), respectively.
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